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CALCULATION OF TWO-DIMENSIONAL SHEAR-DRIVEN 
CAVITY FLOWS AT HIGH REYNOLDS NUMBERS 

A. HUSER AND S. BIRINGEN 
Department of Aerospace Engineering Sciences, University of Colorado, Boulder, CO 80309, U.S.A 

SUMMARY 
The time-dependent Navier-Stokes equations are numerically integrated for two-dimensional incompress- 
ible viscous flow in a shear-driven square cavity. Using a time-splitting method and finite differences on 
a staggered mesh, the momentum and pressure equations are directly solved by a tensor product method 
where one finite difference direction is diagonalized by eigenvalue decomposition. The effects of increasing 
Reynolds number are studied and the developing boundary layer is captured by using a finely clustered 
mesh. At Re=30000 the flow is in a continuously developing unsteady regime. Power spectrum plots 
indicate that the unsteady flow oscillates with one fundamental frequency and exhibits some characteristics 
of transition between laminar and turbulent states. 

KEY WORDS Unsteady cavity flows 

1. INTRODUCTION 

Cavity flows have been frequently employed to test the accuracy of Navier-Stokes solvers, with 
the isothermal, square, lid-driven cavity being the most popular. A comprehensive survey of 
numerical work on lid-driven flows is given by Ghia et ul.,’ who studied the vortex dynamics at 
high Reynolds numbers. Recently Biringen and Danabasoglu’ investigated a cavity flow with an 
oscillating lid and with surface heating. The shear-driven cavity flow is closely related to the 
lid-driven flow, the only difference being the definition of the driving force, which is a constant 
surface velocity gradient in the former (free surface with no deformation) and a constant surface 
velocity in the latter (solid boundary). In this work, by addressing the shear-driven cavity flow 
rather than the well investigated lid-driven cavity flow, we will display some novel results, even 
though the basic physics of the two flows is similar. Of the few numerical simulations concerning 
shear-driven cavity flows, Kumagai’s3 work addresses the effects of aspect ratio at moderate 
Reynolds numbers and provides comparisons with the earlier work of Bye.4 The shear-driven 
cavity flow is also of interest becuase of its similarity to wind-driven flows and can be useful to 
assess the momentum transport from air to water when the effect of waves on the interface is 
neglected. In an experimental study Wu5 investigated the effects of waves in a shallow, long tank 
and deduced that the momentum transport from air to water due to wave motion on the interface 
is important for the Reynolds number range he considered. Wu5 also found that when the effects 
of waves are taken into account, the surface current velocity is proportional to the wind friction 
velocity, a fact that is not valid for the present pure shear-driven flow. In the cases studied here, 
using lower Reynolds numbers than used by Wus (about one order of magnitude lower) and the 
assumption that the interface is flat, a central question is to determine the onset of unsteady flow 
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as the Reynolds number increases. The unsteady time-asymptotic dynamics of two-dimensional 
recirculating flows has only recently received attention with increased computational capabili- 
ties6 and is an informative way to investigate the behaviour of the non-linearities in the 
Navier-Stokes equations. 

The purpose of this paper is to investigate two-dimensional shear-driven cavity flows at high 
Reynolds numbers with emphasis on the unsteady (unstable) state. Note that at this stage, before 
the flow becomes turbulent, the flow dynamics can be simulated only by a time-accurate 
computational model, which is the approach used in the present work. Kumagai's3 work is based 
on the steady state vorticity equation, which cannot provide solutions in the unsteady flow regime 
at high Reynolds numbers. Consequently, in hs work the flow behaviour at transition was 
inferred from the calculated velocity gradients in steady flow as the Reynolds number was 
increased.' In the present work we consider the time-dependent Navier-Stokes equations and use 
a time-accurate solution procedure capturing the true unsteadiness of the flow. Furthermore, 
since the present calculations were continued for very long integration times, the results are free 
from any long-term pseudotransients which may persist in cavity flow solutions at high Reynolds 
numbers. 

Since the present computations are based on the two-dimensional Navier-Stokes equations, 
the influence of side walls is assumed to be negligible. We stress the fact that the main purpose of 
the paper is to demonstrate the differences between steady and unsteady numerical models in 
predicting the onset of oscillatory flow in two-dimensional cavities. At high Reynolds numbers 
three-dimensional effects due to end walls and spanwise aspect ratio become imp~r tan t ,~ .  ' but 
these effects are not considered here. However, on the basis of the two-dimensional computations 
of Sethian and Ghoniemg using the vortex method to calculate the two-dimensional turbulent 
flow over a backward-facing step, it can be asserted that time-dependent two-dimensional models 
can provide insight into the vortex dynamics in the unsteady flow regime. In this work, using 
a totally different solution technique for the same set of equations, we were also able to simulate 
the unsteadiness of high-Reynolds-number flows in shear-driven cavities and obtained an esti- 
mate for the Reynolds number at which the flow becomes oscillatory in the absence of side wall 
effects. 

2. PROBLEM DEFINITION 

We consider a two-dimensional square cavity containing water which is in contact with a steady 
air flow blowing over its surface (Figure 1). We assume that the boundary layer developed at the 
surface has a constant skin friction and that this friction drives the flow in the cavity. Conse- 
quently, at the air-water interface the shear stress z=p,u:  is constant; here u* is the friction 
velocity at the interface. The governing equations are non-dimensionalized by the friction velocity 
u+ and the cavity height 1. The governing equations that describe this incompressible, constant 
density flow are the continuity and Navier-Stokes equations, which can be written as 

au 1 
at Re 
- + u - v u =  -vp+-vh, 

v . u = o .  
Here the Renolds number is defined as Re = h , / v  and the physical constants used in the problem 
are the kinematic viscosity of water, v =  m2 s - l ,  the density of water, p = loo0 kg m-', and 
the density of air, p.=l kgm-3. These equations are solved with the following boundary 
conditions: 
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Figure 1. Flow geometry and co-ordinate system for shear-driven cavity 

at the air-water interface, 

at the solid walls, 

u=u=o .  

Note that there is no need for an explicit boundary condition for the pressure when using the 
time-splitting method explained in Section 3. In fact, it has been proven that homogeneous 
Neumann boundary conditions for the pressure ensure a consistent scheme independent of the 
Reynolds number at all types of boundaries, including solid walls and inflow/outflow bound- 
aries." 

3. THE COMPUTATIONAL PROCEDURE 

The Navier-Stokes equations describing this flow were solved by a modified version of the 
time-splitting method proposed by Kim and Moin." In this section we briefly summarize the 
main points and expand on the techniques that were employed for the solution of the Helmholtz 
and Poisson equations obtained as a result of the time/space discretization. The time-splitting 
method involves two steps. During the intermediate step from t" to t^ the following equation is 
solved: 

where L = V - (uu) and p is the computational pressure; also, temporal discretization is done with 
the Crank-Nicolson scheme on the viscous terms and the Adams-Bashforth method on the 
convective terms. Accordingly, the procedure is second-order-accurate in both time and space. 
For the time step from t^ to t"+l we solve the equation 
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Taking the divergence of (4) and considering that V -u"+'vanishes because of continuity, the 
following equation has to be satisfied: 

After rearranging (3) and (9, the solution algorithm for each time step can be written as follows. 

Solve for the 12- and &velocities using (3): 

with Q = 0 at the walls and at;/ay = - (p,Jp) Re and u = 0 at the interface. 
Solve for the pressure pn+l:  

(7) 
2 
At 

VZp"+' =- v .  A+V2p", 

with ap"+'/dn=O at all four boundaries, where II is a vector normal to the boundary. This 
boundary condition follows from (4) with u"+ ' = G at the boundaries provided that aplan = 0 
at the first time step. Despite the fact that this is an approximation to the boundary 
condition implied by (4), it provides a consistent scheme when used with the homogeneous 
pressure boundary lo Our previous numerical experiments on cavity flows' as 
well as the analysis of Gresho'O conclusively demonstrate that specifying a slip velocity on 
the boundaries from (4) for the intermediate velocities gives virtually the same result as using 
a=u"" at the boundaries. 
Update u"+' using the relation given by (4): 

Note that here we are solving for the computational pressure, which is a second-order 
aproximation to the true pressure (P. M. Gresho, private communication, 1991). A comparison 
between the present formulation and the original formulation of Kim and Moin," who disregard 
the pressure term in (3), was done for the unsteady (Re = 30 OOO) solution and shows that in the 
latter the velocity amplitudes are approximately 1% smaller than in the former (Figure 2). This 
result was found to be independent of the time step provided that the Courant number was less 
than 0.5, which is the limit of stability for both methods. Since by including the pressure the 
solution procedure becomes fully second-order, we performed the unsteady calculations with this 
method. However, the solution procedure with the pressure requires storage of one additional 
array, so that the original method can be preferable if storage is a limiting factor. 

With this procedure the Navier-Stokes equations are reduced to a set of Helmholtz equations 
with DirichletlNeumann boundary conditions for the velocities (equation (6) )  and a Poisson 
equation with Neumann boundary conditions for the pressure (equation (7)) 

The spatial discretization is done on a stretched and staggered meshes as shown in Figure 3. 
The stretching is computed by the formula 

xc i= ! [ l - cos (ns ) ] ,  2 i=1,2,. . . , M .  (9) 

Similarly yCj are computed forj= 1,2 . . . , N. It is important that each pressure node is in a cell 
centre to ensure that continuity is satisfied in the cell. The Neumann boundary conditions for 
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Figure 3. Grid configuration for stretched and staggered mesh-, grid for velocity nodes; ---, grid for pressure nodes 

pressure are satisfied by placing one pressure node on each side of the boundary, satisfying 
continuity at the boundaries. Because of the Neumann boundary conditions, after discretization 
the pressure equation yields a non-positive definite matrix which is singular with one zero 
eigenvalue. This singularity is avoided by setting the pressure value at one of the boundary points 
equal to zero. However, the coefficient matrix for pressure is still ill-conditioned and because of 
the stretched mesh the matrix is also asymmetric. For the solution of this matrix, given the simple 
geometry, we have found the tensor product method to be highly efficient. This method is briefly 
described below. 
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3.1. The tensor product method 

Neumann boundary conditions. This equation can be written as 
The problem under consideration is a Poisson equation on a rectangular domain with full 

v24 = R H S ,  (10) 
where R H S  is the source term. The Laplace operator is discretized with second-order finite 
differences on a five-point stencil. The resulting difference equation reads 

4i- 1, j a r  -4i, jai + 4i+ 1. ja: + $ i ,  j -  I b i  -4i. jbj + 4i. j+ lb; =RHSi ,  j ,  (11) 

where the parameters a and b are defined as (see Figure 2) 

- 1 1 
a? = ai=ai- +a:, ai =- 

AxiAxCi’ ’ Axi+ Axci’ 

Equation (11) can be written as a matrix product equaton given as 

where A is the tridiagonal matrix representing the x-direction finite difference operator, 

0 O \  

a;-a1 a: 0 0 ... / a, -a2 a: 0 ... 
I :  

B is similarly a tridiagonal N-dimensional matrix representing the y-direction finite difference 
operator, @ is the unknown N x M matrix and RHS is an N x M matrix. Note that Q, and RHS 
are kept in matrix form and not as vectors. This is possible since the operators A and B are 
independent of the y- and x-direction respectively. Using the relation (BQ,T)T= @BT, equation (12) 
becomes 

(13) A@ + @ B ~  = RHS. 

Then BT is decomposed into BT= Q AQ-’ and with this substitution equation (13) can be written 
as A@ + @ Q A Q - = RHS, which becomes 

A@Q + @ QA = RHS Q. (14) 
The matrix product UQ represents an intermediate unknown matrix \Y=@Q. Equation (14) 
represents N independent sets of tridiagonal linear equations corresponding to one equation for 
each eigenvalue. This matrix equation (14) can now be solved in three steps. 

1. Matrix multiplication: R = RHS Q. 
2. Solve for P: A\Y+\YA=R. 
3. Matrix multiplication: @=\YQ-’. 
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During the second step the tridiagonal matrix is solved N times using the Thomas algorithm. 
Since in this step only a back substitution is performed for each tridiagonal solver (the LU 
decomposition is done only at the first time step and is stored for subsequent use), this becomes an 
efficient algorithm. This step is also vectorized by running the inner loops along the decomposed 
direction (y-direction). The bulk of the computer work is done in steps 1 and 3 and here we can 
apply standard high-speed matrix multiplications. The storage requirement for the tensor 
product method is of order N 2 .  

For a large number of grid points a direct solution of (11) by Gaussian elimination is not 
preferable because of the storage requirements. When the matrix is factorized, fill-in occurs 
between the bands and the storage needed is of order N4. Owing to rounding errors, solutions of 
large matrices by Gaussian elimination may also be inaccurate. 

For the momentum equations we used both a general purpose conjugate gradient program 
(ICGC) written by Kapitza and Eppel" and the tensor product method described above. ICGC 
reads the diagonals in a banded matrix and iterations are performed until convergence is reached. 
For the highly ill-conditioned pressure equation convergence was not reached for large N using 
this technique. Note that the velocity equations were discretized in the same way as the pressure 
equation, i.e. using central differences. However, because these are Helmholtz-type equations with 
Dirichlet boundary conditions, the finite difference matrix is well-conditioned and can be 
efficiently solved by the conjugate gradient method. 

In comparing the tensor product method and ICGC, we found that the fully vectorized tensor 
product method is more efficient on the Cray Y-MP. The tensor product method is also more 
applicable and general since there is no need to find an optimal convergence criterion and, owing 
to machine round-off, it can solve singular matrices.13 Since we did not try to optimize the IGCG 
programme, a fair comparison of CPU time use cannot be done and the CPU times reported here 
are only for the tensor product method. 

In all the computations the Courant number was kept below 0.5 to ensure the stability of the 
solution; here we define the Courant number as C=maxi,j[(Iui,jI/Axi+Iui, jl/Ayj)A~]. 

4. RESULTS AND DISCUSSION 

In this section we first discuss several cases providing a direct comparison with the results of Ghia 
et al.' and Kumagai3 and also present a mesh refinement study. Subsequently, high-Reynolds- 
number results are discussed emphasizing the onset of the unsteady flow regime. 

4.1. Code verification and mesh refinement study 

Two lid-driven cavity cases with ReL = 1000 and 5000 (ReL = IuJv, where uL is the lid velocity) 
were compared with Ghia et al.' for which streamfunction $mi,, and vorticity iVc values in the 
centre of the main eddy are listed in Table I. It is shown that, despite the relatively coarse mesh, the 
present results compare very favourably with the benchmark study. 

Two important issues concerning the numerical method used in this work involve the effect of 
mesh stretching on the solution accuracy and the mesh independence of the results at high- 
Reynolds numbers. In Table I1 the values of ReB and A$ are listed for Re= 100 and 2000 using 
several mesh configurations for the shear-driven cavity. Here ReB is the Reynolds number defined 
by Bye4 in terms of the surface velocity (us) at the midpoint of the cavity, i.e. 

U ReB =? Re 
u* 

(ReB can be directly compared with ReL) and A$ is defined as A$ = 
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Table I. Comparison between results of Ghia et al.’ and present calculations for lid-driven cavity for two 
Reynolds numbers 

Re= 1000 $min cvc Re, = SO00 $min [“C 

Present, 81 x 81 stretched -0.1175 -2-035 Present 81 x 81 stretched -0.1219 -2.001 
Ghia et al., 129 x 129 -0.1197 -2.050 Ghia et al., 257 x 257 -0.1190 - 1+?602 

constant constant 

Table 11. Effect of mesh resolution on steady state results for low Reynolds numbers and comparison with 
Kumagai’s results’ 

Re= 100 ReB A* Re = 2000 R 2  A* 

81 x 81 stretched 1.685 1.561 x lo - ’  55 x 55 stretched 
41 x 41 stretched 1.681 1.569 x 41 x 41 stretched 
33 x 33 stretched 1.688 1593 x lo- ’  33 x 33 stretched 
81 x 81 constant 1.687 1551 x 55 x 55 constant 
41 x 41 constant 1.694 1.564 x 41 x 41 constant 
41 x 41 constant3 1.735 1.55 x lo - ’  41 x 41 constant’ 

33 x 33 constant 

~ 

291.20 
288.45 
285.90 
298.60 
300.3 
300.0 
303.2 

~~ ~ 

1.625 x 
1.634 x ~ O - ~  
1.636 xlO-’  
1.5804 x 
1.572 xlO-’  
1.55 x10-2 
1.567 xlO-’  

Accordingly, the results obtained with both the stretched and constant mesh configurations are 
consistent, i.e. with increasing mesh resolution, ReB and A+ converge to a constant value. These 
tabulated values also indicate good quantitative agreement with Kumagai’s3 results for which the 
A+ were determined from the streamfunction plots and are accurate only up to two digits. 

A mesh resolution study was also conducted for the Re = 30 OOO case during the final stages of 
the calculations on an 81 x 81 grid and on a 161 x 161 grid for a short time period (Figures 4 and 
5 respectively). Streamfunction contours at four different times 050 time units apart display 
a high similarity between the high- and low-mesh calculations, with a more detailed contour map 
for the fine mesh results. Furthermore, in Table I11 almost no difference is observed between the 
values of ReB and A+ calculated for these two cases. Therefore it can be asserted that the 81 x 81 
grid provides adequate resolution. 

On the basis of this mesh resolution study it can be concluded that the use of a stretched mesh 
does not degrade the solution accuracy and gives satisfactory results. It is also clear that 
a stretched mesh is preferable at high Reynolds numbers where the velocity gradients are large 
close to the boundaries; a fine mesh in these regions will ensure proper resolution of these 
gradients. We have also been able to determine the mesh resolution that provides the desired 
accuracy at high Reynolds numbers and is still feasible for very-long-term computations involving 
several hundred thousand time steps (Table IV) required for convergence for high-Reynolds- 
number oscillatory solutions. 

4.2. Low-Reynolh-number cases 

‘Two cases with Re= 100 and 2000 were considered and the ensuing steady state solutions 
compared with Kumagai’s3 results which he obtained by numerically integrating the steady state 
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Figure 4. Steamfunction contours for Re=30000 on 81 x 81 grid (a) t=5000.5; (b) t=5001.0; (c) t=5001.5; 
(d) t = 5002.0 (increment 0.005 for main eddy and 5.0 x in corners; every 10th grid line shown dahsed) 

governing equations in vorticity-streamfunction form by an alternating direction (ADI) implicit 
scheme. For Re = 100 the streamfunction and vorticity contours obtained from the present 
calculations (Figures 6(a) and 6(b), respectively) display a main centre vortex and one large 
secondary vortex at each lower corner of the cavity; the solution is symmetric around the central 
axis. For Re = 2000 the steady state results (Figures 7(a) and 7(b)) indicate movement of the main 
vortex centre to the left and enlargement of the left corner eddy. The formation of secondary 
corner vortices is also apparent from the streamfunction contours (Figure 7(a)). Comparison with 
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Figure 5. Streamfunction contours for Re=30000 on 161 x 161 grid: (a) t=50005; (b) t=5001Q (c) t=5001.5; 
(d) t=MO2.O (increment 0.005 for main eddy and 5.0 x lo-$ in corners; Every 20th grid line shown dashed) 

Table 111. Results of final stages for Re = 30 OOO with different mesh resolutions 

t = 5001 t = 5002 

CPU seconds per 
Grid ReB A$ ReB A$ time step 

81 x 81 11006.4 0-04724 11217.6 00463 0033 
161 x 161 10993.2 0-046 17 11201.1 0.0450 0.194 
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Table IV. Results of high-Reynolds-number cal- 
culations 

Re = 10000 Re = 30000 

ReB 2593 11 loo* 
A* 0.0327 0.04* 
At 0.009 0.005 
Gin 400 S O 0 0  
Grid 61 x 61 81 x 81 

1097 

* Averaged values. 

Figure 6. Steady state solution for Re= 100: (a) streamfunction contours (increment 0.OOOl); (b) vorticity contours 
(increment 0.02) 

the results of Kumagai3 reveals a strong similarity. As a notable exception to this similarity, 
Kumagai’s results indicate that the high vorticity gradients forming at the upper (singular) 
corners for Re = 100 elongate and move away from the upper boundary with increasing Reynolds 
number (Figure 2(a) of his paper). This phenomenon is not physical but is purely an artifice 
ensuing from the selection of maximum/minimum contour levels to be plotted. As expected, if the 
calculated maximum level is included, the high-vorticity-gradient region always remains at the 
interface (Figure 7(b)). 

4.3. High-Reynolds-number eflects 

In shear-driven cavity flows the Reynolds number is proportional to the driving shear directly 
influencing the flow dynamics. When the Reynolds number increases, effects of viscosity are 
confined to a thin layer close to the solid boundaries, including high gradients in the shear stress 
distribution. The local curvature of the resulting mean velocity profiles (Figures 8 (a)-8(e)) also 
increases. As evident from the reverse flow indicated in these figures, small eddies develop in the 
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Figure 7. Steady state soluton for Re=2000: (a) streamfunction contours {increment BOO1 in centre and 5.0 x in 
comers); (b) vorticity contours (increment 0.02) 

vicinity of the two lower corners (and also at the upper right comer) and the laminar mean 
velocity becomes unstable. The interaction of these eddying motions with the mean shear 
eventually leads to turbulence. Because of the two-dimensionality of the mathematical model, the 
present simulations will be limited to the unsteady (unstable) flow regime prior to the onset of 
turbulence. 

The high-Reynolds-number calculations were done for Re = 10 OOO and 30 OOO. Note that 
according to Keulegan's experimental results,14 in the wind-driven cavity, transition from 
laminar to turbulent flow may occur for ReB between 400 and 1OOO. Similarly, on the basis of an 
analysis using the steady state Navier-Stokes equations, Bye4 determined a range of transition 
ReB between 400 and 600. Furthermore, Kumagai3 roughly estimated transition to occur at even 
lower ReB, although he strongly cautioned aganst the accuracy of such data obtained from the 
steady state equations. Both authors used the formation of an inflectional velocity profile 
indicating reverse flow as the criterion for the onset of the unsteady regime. 

In the present work the convergence of the solutions was measured in terms of the total kinetic 
energy, the time history of which is displayed in Figure 9(a) for Re= 10000. As evident from this 
figure, the solution converges to a steady state at about t = 400 and the absence of any oscillations 
indicates steady flow. The calculated value of ReB in this case is ReB = 2593, which is much higher 
than the transition values obtained by Kumagai' and Bye4 and lends strong evidence to the 
inadequacy of their steady state model to predict the onset of transition. It is interesting to note 
that in Figure 8 the velocity profiles for Re = 2000 and 1OOOO (equivalent to ReB = 291-2 and 2593 
respectively) do display regions of strong reverse flow. However, the solutions converge to 
a steady flow regime, refuting the use of the 'inflectional velocity profile' criterion for the 
bifurcation to an unsteady state in the absence of side wall effects. The experiments of K e ~ l e g a n ' ~  
were likely influenced by the finite spanwise aspect ratio to undergo transition at a much lower 
ReB than in the case of the computation at infinite aspect ratio. 

The steady state streamfunction and vorticity contours are presented in Figures 9(b) and 9(c) 
respectively for the Re = 10 OOO case. Comparison of the vorticity contours with the correspond- 
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Figure 8. Horizontal velocity (u) profiles in cavity at (a) x =0.037, (b) x =0.24, (c) x =0.5, (d) x =076 and (e) x =0.96 A, 

Re=30000, B, Re=10000, C, Re=2000; D, Re=100 



1 la0 A. HUSER AND S. BIRINGEN 

, 

Figure 9. Steady state results for Re= 1OooO: (a) time history of total kinetic energy; (b) streamfunction contours 
(increment 0.001 in centre and 0~0002 in corners); (c) vorticity contours (increment 0.3); (d) velocity vectors with vector 

length proportional to velocity magnitude; (e) constant length velocity vectors 



1 \ c 

Figure 10. Streamfunctioncontours for Re=30000on 81 x 81 grid: (a) t=23;(b)  t=20;(c) t=60;(d) t=90; (e) t=870 
(increment 0,001 for (aHd) and 0002 for (e)) 
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ing results at Re=100 and 2000 (Figures 3(b) and 4(b) respectively) reveals that the high- 
velocity-gradient regions move towards the boundaries as the Reynolds number increases. The 
steamfunction contours manifest essentially the same flow patterns for all three cases (Figures 
6(a), 7(a) and 9(b)), characterized by one primary eddy occupying the centre of the cavity and one 

Figure 11. Velocity vectors showing evolution of flow in lower left corner with vector length proportional to velocity 
magnitude. Snapshots taken at 0.25 time unit intervals starting at t=5000 
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(4 
Figure 11. (Continued) 

secondary eddy at each of the three corners; tertiary eddies develop at the lower corners as the 
Reynolds number increases. Figures 9(d) and 9(e) contain velocity vectors highlighting the details 
of the vortical flow in the cavity. 

In Figures lO(a)-lO(e) streamfunction contours plotted at several instants in time display the 
flow evolution for Re = 30 000, including the start-up period. As the flow develops, the flow field 
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becomes more complex and several vortices form at each corner of the cavity, except the upper 
downstream comer. These small eddies are unstable and oscillatory and their strength also varies 
with time. The details of this vortical activity are documented in Figures l l (ak l l (d) ,  in which 
enlarged snapshots of velocity vectors in the vicinity of the lower left corner are presented at 0.25 
time unit intervals starting with t = 5000. These eddies are driven by the high velocity imparted 
from the main vortex and are associated with high root-mean-square (RMS) intensities of the 
velocity fluctations (see Figures 14(aF14(c)). The eddies in the lower right corner are also 
unstable, but they have less momentum and therefore oscillate with less strength. The oscillatory 
motion energized in the corners in turn influences the flow in the cavity centre and induces 
oscillations on the main vortex. Similarly to the Re = 10 OOO case the time evolution of the total 
kinetic energy in the cavity was plotted to follow the convergence of the solution to a statistically 
steady state. This is documented in Figure 12(a) and displays the approach of the kinetic energy 
to a constant mean value at about t = 2000. The constant mean value indicates a balance between 
energy production and dissipation in the cavity, while the oscillatory behaviour about the mean 
implies an unsteady motion. Consequently, it is apparent that for this Reynolds number, for 
which we calculate ReB= 11 100, the flow becomes unsteady and unstable. This value of ReB at 
which the flow becomes unstable is about one order of magnitude higher than those estimated by 
Kumagai3 and Bye.4 Figure 12(b), where the kinetic energy is recorded from t=210 to 285 using 
two different Ar values (At = 0.005 and 0.0025), indicates that the unsteady solution is independent 
of the step size and that the oscillations appearing in the solution are physical and not numerical. 

Another interesting observation is that the recirculation zone in the lower left corner grows 
with increasing Reynolds number (see Figures 6(a), 7(a) and 9(b)). When transition occurs, the 
single corner eddy breaks down into several smaller eddies (Figure 11). This is in agreement with 
Sethian and Ghoniem’s’ calculations for the backward-facing step flow, where the reattachment 
length increases until transition starts and the unsteady regime is characterized by more than one 
eddy in the wake behind the step. The existence of small eddies downstream of the corner eddy at 
high Reynolds numbers is a result of decreasing diffusive length scale with increasing Reynolds 
numbers. At low Reynolds numbers the diffusive length scale is large so that small scales of 
motion (small eddies) are rapidly dissipated by the action of viscosity. 

40. 

h 

F: 
i? 
0 
U 
c 
.0 r: 
... 

2 

0. 
0. t 5000. 

(4 
210 t 285 

(b) 

Figure 12. Time history of total kinetic energy for Re=30000 (a) from t = O  to 5ooo and (b) from t=210 to 285 
A, At = 0005; B, At =0.0025 
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Figure 13. Time-averaged flow field quantities for Re= 30 OOO. (a) streamfuncton contours (increment 0.005 in centre and 
0 5  x lo-’ in corners); (b) vorticity contours (increment 2.0); (c) velocity vectors with vector length proportional to velocity 

magnitude; (d) constant length velocity vectors 

The mean velocity and the RMS values of the fluctations were obtained by averaging the 
velocity field from t = 5000 to 5100. Figure 13(a) furnishes the time-averaged streamfunction 
contours exposing the multivortex structures at the three corners of the cavity. The time-averaged 
vorticity contours (Figure 13(b)) indicate the concentration of the mean vorticity in a very thin 
region along the upper and left boundaries. Mean velocity vectors are displayed in Figures 13(c) 
and 13(d) indicating the mean circulatory motion in the cavity. In both lower corners of the cavity 
multivortex structures are observed. The RMS values of the fluctating velocities and the shear 
stress, i.e. the non-zero components of the Reynolds stress tensor, were also calculated. The 
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Figure 14. Reynolds stress contours for Re= 30000: (a) RMS-u (increment 0001); (b) RMS-u (increment OQO1); (c) shear 
stress (increment 3.2 x dashed lines indicate negative, solid lines positive contours 

contours of these ‘turbulent’ quantities are concentrated close to the corners and along the 
bottom and right walls of the cavity (Figures 14(ab14(c)); the largest magnitudes appear in the 
regions occupied by the most energetic eddies. The RMS profiles of the fluctating velocity 
components and the shear stress (Figures 15(akl5(c)) reveal that the highest RMS U-value 
obtained is about 2.5%, indicating a substantial intensity of the oscillatory motion, which, as 
expected, has not reached a turbulent state. 

Time variations of the fluctating velocities were recorded at  two locations in the vicinity of the 
left corner where the strongest oscillations take place. For the location corresponding to 
x=y=O-O37 (point A), which is interior to the region with high Reynolds stress amplitudes, the 
time history of the u-velocity (Figure 16(a)) and the u-u phase portrait (Figure 16(b)) were also 
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Figure 17. Velocity signal at x=020, y=0.084: (a) u-velocity time signal; (b) u-u phase portrait 
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Figure 18. (a) Total kinetic energy from t=4000 to 5000. (b) Power spectrum: 1, frequencyfAO.28; 2,f=Q56; 3,f=084; 
4, f= 1.12; 5, f= 1.40, 6, f= 1.68 

calculated. The phase portrait (Figure 16(b)) reveals an almost periodic motion which converges 
upon a loosely banded elliptic orbit. The absence of a tight limit cycle indicates that the flow is 
unsteady but not rigidly periodic. The u-u phase portrait obtained at point B (corresponding to 
x =0.20, y=O.O84) has a spaghetti-like appearance (Figure 17(b)), indicating a greater degree of 
disorder in comparison with the signal recorded at point A. Note that point A is located close to 
the corner walls that restrict the oscillatory motion, whereas point B is located in the region with 
large Reynolds stresses, farther away from the walls. Consequently, oscillations are not restricted 
and the eddies are free to move with the energy transferred to them from the primary vortex. 
Finally, the power spectrum for the total kinetic energy signal during the last lo00 time units 
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(Figure 18(a)) was calculated and shows that frequencies with a multiple of 0.28 clearly have 
distinct energy peaks, with the most energetic frequency at 4 x 0.28 (Figure 18(b)). The frequency 
0.28 scales to the rotation rate of the main eddy. This rotation rate is approximated from Figure 
8(c) by the average slope of curve A between y=O.l and 0.9. 

5. CONCLUSIONS 

In this work a numerical study was presented to investigate high-Reynolds-number effects in 
shear-driven cavity flows. The two-dimensional time-dependent Navier-Stokes equations were 
integrated by a time-splitting technique using second-order finite differences on a staggered and 
stretched mesh. The Helmholtz equations resulting from the discretization of the momentum 
equations and the pressure Poisson equation were solved by a tensor product method obviating 
the use of factorization. 

The present simulations using a time-accurate mathematical model provided an estimate of the 
onset of oscillatory flow (e.g. an estimate of the critical Reynolds number), indicating that the 
two-dimensional shear-driven cavity flow becomes unsteady and unstable for Reynolds numbers 
around 30000, which is about one order of magnitude higher than earlier estimates based on 
steady state calculations. The present calculations also revealed that the flow is continuously 
evolving in the unsteady state. After a start-up period, no more energy is accumulated by the flow 
and a balance is established between the energy imparted to the flow by the driving surface shear 
and the energy dissipated owing to viscosity. 
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